GLib
  • Initial page
  • I. Концепция
    • Background
    • Типы данных и программирование
  • Динамическая система типов Glib
    • Введение
    • Функции копирования
    • Соглашения
    • Неинстанциируемые не классифицированные базовые типы
    • Инстанциируемые классифицируемые типы: объекты
    • Неинстанциированные классифицированные типы: Интерфейсы.
  • Основной класс GObject
    • Введение
    • Инстанциация объекта
    • Объектное управление памятью
    • Свойства объекта
  • Система сообщений GObject
    • Замыкания
    • Сигналы
  • II. Описание API
    • GType
    • GTypePlugin
    • GTypeModule
    • GObject часть 1
    • GObject часть 2
    • Enums and Flags
    • GBoxed
    • Generic Values
    • Parameters and Values часть 1
    • Parameters and Values часть 2
    • Parameters and Values часть 3, ага
    • Value arrays
  • III. Описание инструментов
    • glib-mkenums
    • glib-genmarshal
    • gobject-query
  • IV. Руководство
    • Как определить и реализовать новый GObject?
    • Объектные методы
    • Как определять и реализовывать Интерфейсы?
    • Как создавать и использовать сигналы
    • Как пользователи могут злоупотреблять сигналами (и почему некоторые думают что это хорошо)
  • V. Об инструментах
    • Об инструментах
  • GTK 4
    • GtkApplication и GtkApplicationWindow
    • Widgets
Powered by GitBook
On this page

Was this helpful?

  1. Динамическая система типов Glib

Функции копирования

PreviousВведениеNextСоглашения

Last updated 6 years ago

Was this helpful?

Основным обобщением между всеми glib типами (базовыми и небазовыми, классофицированными и неклассофицированными, instantiable и non-instantiable) является то, что ими можно манипулировать через единственный API для копирования и создания типов.

Структура используется как абстрактный контейнер для всех этих типов. Её упрощенный API (определён в gobject/gvalue.h) может использоваться для вызова value_table функций в течение регистрации типа: например для копирования содержимого в другой . Это подобно назначению в C++, когда вызывается оператор копирования C++, чтобы по умолчанию побитно модифицировать копию семантики C++/C структур/классов.

Следующий код демонстрирует как можно копировать 64 битное целочисленное, так же как экземпляр указателя (код этого примера находится в исходном пакете этой документации в sample/gtype/test.c):

static void test_int (void)
{
  GValue a_value = {0, }; 
  GValue b_value = {0, };
  guint64 a, b;

  a = 0xdeadbeaf;

  g_value_init (&a_value, G_TYPE_UINT64);
  g_value_set_uint64 (&a_value, a);

  g_value_init (&b_value, G_TYPE_UINT64);
  g_value_copy (&a_value, &b_value);

  b = g_value_get_uint64 (&b_value);

  if (a == b) {
    g_print ("Yay !! 10 lines of code to copy around a uint64.\n");
  } else {
    g_print ("Are you sure this is not a Z80 ?\n");
  }
}

static void test_object (void)
{
  GObject *obj;
  GValue obj_vala = {0, };
  GValue obj_valb = {0, };
  obj = g_object_new (MAMAN_BAR_TYPE, NULL);

  g_value_init (&obj_vala, MAMAN_BAR_TYPE);
  g_value_set_object (&obj_vala, obj);

  g_value_init (&obj_valb, G_TYPE_OBJECT);

  /* g_value_copy's semantics for G_TYPE_OBJECT types is to copy the reference.
     This function thus calls g_object_ref.
     It is interesting to note that the assignment works here because
     MAMAN_BAR_TYPE is a G_TYPE_OBJECT.
   */
  g_value_copy (&obj_vala, &obj_valb);

  g_object_unref (G_OBJECT (obj));
  g_object_unref (G_OBJECT (obj));
}

Важно в выше представленном коде то, что точная семантика вызова копирования не определена так как зависит от реализации функции копирования. Определённые функции копирования могут решить распределить новый участок памяти и зтем скопировать данные из источника в адресат. Другие могут просто увеличить количество ссылок на экземпляр и скопировать ссылку в новый GValue.

value_table определённый в gtype.h используется для определения этих функций и полностью описан в документации API поставляемой с GObject (for once ;-) это объясняет почему мы не будем детализировать точную семантику.

typedef struct _GTypeValueTable         GTypeValueTable;
struct _GTypeValueTable
{
  void     (*value_init)         (GValue       *value);
  void     (*value_free)         (GValue       *value);
  void     (*value_copy)         (const GValue *src_value,
                                  GValue       *dest_value);
  /* varargs functionality (optional) */
  gpointer (*value_peek_pointer) (const GValue *value);
  gchar            *collect_format;
  gchar*   (*collect_value)      (GValue       *value,
                                  guint         n_collect_values,
                                  GTypeCValue  *collect_values,
                                  guint                collect_flags);
  gchar            *lcopy_format;
  gchar*   (*lcopy_value)        (const GValue *value,
                                  guint         n_collect_values,
                                  GTypeCValue  *collect_values,
                                  guint                collect_flags);
};

Маловероятно что вы будете когда либо определять value_table в процессе регистрации типа потому что value_tables наследуется из родительского типа для небазовых типов, это значит что если вы хотите создать базовый тип (не очень хорошая идея!), вам не потребуется обеспечить новый value_table так как вы унаследуете структуру value_table из родителя вашего типа.

[] Пожалуйста помните что есть другие функции регистрации: . Мы не будем обсуждать эту функцию здесь, так как её использование очень похоже на версию _static.

GValue
g_value_copy
GValue
GValue
GObject
2
g_type_register_dynamic